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Ion Diffusion in a Coulombic Field 
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An analytic solution of counter-ion diffusion in a semi-infinite domain near a 
uniformly charged surface is obtained within the Smoluchowski-Poisson- 
Boltzmann treatment. The long-ranged Coulombic interaction results in a finite 
first-passage time to the charged surface, although higher moments of the first- 
passage time are infinite. This problem is directly related to an exactly solvable 
model of a lattice random walk with a position-dependent bias. 
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1. I N T R O D U C T I O N  

We consider the diffusion of an assembly of identical point charges con- 
fined to the half-space z > 0 .  The system is neutralized by a plane of 
uniform charge located at z = 0 with surface charge density 0. The medium 
in z > 0 is treated as a continuum characterized by a dielectric constant ~, 
and the ions have a constant diffusion coefficient D in this medium. The 
dynamics of ion diffusion is treated in the Smoluchowski-Poisson- 
Boltzmann approximation in which the ions are considered to diffuse in an 
external field. As a consequence, dynamical ion-ion correlations are 
neglected. Furthermore, this external field is taken to be the equilibrium 
singlet potential of mean force given by the Poisson-Boltzmann theory (1) 
for Coulombic systems. The physical approximations behind this treatment 
of diffusion in Coulombic systems are discussed in detail elsewhere/2) This 
model has been used to analyze ion diffusion in different geometries and 
ionic compositions (3,4) and the results compare favorably with stochastic 
dynamics simulations. (5) 

For  diffusion or random walks in infinite or semi-infinite domains, the 
first-passage times are in general infinite, as the diffuser has the propensity 
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to "wander off to infinity." This divergence of the first-passage time can be 
overcome in semi-infinite domains by imposing a constant bias toward the 
boundary surface. For the problem considered in this paper, there is a bias 
toward the surface due to the long-ranged Coulombic interactions together 
with the absence of screening effects due to mobile charges of opposite 
signs. This bias is not constant. It decays with distance from the surface, 
but its decay is slow enough that the mean first-passage time to the surface 
is finite, although higher moments of the first-passage time diverge. These 
results are elucidated by noting the correspondence between the present ion 
diffusion problem and a related problem of lattice random walk in an 
external field. (6'7) 

2. T H E  P O I S S O N - B O L T Z M A N N  P R O B L E M  

We first determine the equilibrium singlet potential of mean force 
according to the Poisson-Boltzmann theory for a negatively charged plane 
wall adjacent to an electrolyte consisting only of positive ions of a single 
species. Without loss of generality, we choose the electrostatic potential 
~,(z) to be zero at the negatively charged surface (where there is a uniform 
surface charge density rr < 0) so that 

~0(z) = 0 at z = 0  (1) 

and 0 ( z ) > 0  for z > 0 .  The Poisson-Boltzmann equation for O(z) then 
reads 

~9" ( z ) = - ( 4r~eno/e ) exp [ - ricO(z)  ] (2) 

where, in the Gaussian units employed, e (>0)  is the charge on the ions, e 
is the dielectric constant, and f l=  1 / ( kT ) ,  with k denoting Boltzmann's 
constant and T the absolute temperature. The number density no of ions at 
the surface is a constant to be determined. We introduce the variables 

1"~ 2 = 8rCnofle2/e (3) 

and 

y ( z )  = f leO(z)  (4) 

where y is the dimensionless electrostatic potential and K is the screening 
parameter. (In this continuum treatment of the problem, the only length 
scale present is l/K, the classical Debye length.) Equation (2) becomes 

y " ( z )  = --(1/2)K 2 exp[ --y(z)] (5) 
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The first integral of this equation is 

[y ' (z)]  2 = tc 2 exp[ - y ( z ) ]  (6) 

where the constant of integration is zero because the electric field -O ' (z )  
must vanish as z ~ oe; and from Eq. (6) this also implies that the potential 
~(z) ~ oe in the same limit. 

The surface concentration no and hence the screening parameter ~c can 
be determined from the boundary condition at z = 0: 

4~za (7) 
z=O 

From Eqs. (1)-(6) this gives 

~2 = 8nnofle2/e = (4retie ]o]/c) 2 (8) 

A further integration of Eq. (6) gives 

y ( z )  = In [(~cz + 2)2/4] (9) 

and we see that unlike the classical plasma problem, in which the potential 
distribution is screened exponentially, (~) the reduced potential in this 
problem diverges logarithmically in the limit z --, oo. The charge density in 
the electrolyte is given by en o exp[ - y ( z ) ]  = 4eno/(~cz + 2) 2. Integrating this 
expression over z from 0 to o% we find a total electrolyte charge 1or] per 
unit wall area, exactly balancing the charge on the wall. 

3. T H E  S M O L U C H O W S K I - P O I S S O N - B O L T Z M A N N  P R O B L E M  

If a tagged ion diffuses in an external field with potential w(r), the 
probability density f(r ,  t) for the position r of the tagged ion at time t 
obeys the Smoluchowski equation 

Of(r, t) 
~t 

- -  - D V .  { [ V  + fi V w ( r ) ]  f ( r ,  t)} (10) 

In the Smoluchowski-Poisson-Boltzmann (SPB) theory w(r) is approxi- 
mated by the product of the charge and the potential O(z): 

flw(r) = flesh(z) = y ( z )  (11) 

Details of this theory as well as the approximations involved are discussed 
in detail elsewhere. (2) Since w(r) is only a function of the normal coordinate 
z, diffusion in the directions parallel to the charged surface is simply free 
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diffusion. If we write p = (x, y) and take the initial location of the tagged 
ion as (0, 0, Zo), so that 

f(r ,  0) = 6(p) 6(z - z0) (12) 

we have 

exp( - p2/4Dt) 
f(r ,  t) = 472 Dt F(z, t) (13) 

where F(z, t) is the transverse-averaged propagator 

F(z, t ) = f  d2p f(r ,  t) (14) 

We now introduce the dimensionless variables 

~=Kz (lS) 

Z=K2 Dt (16) 

(9(~, t) = g 1F(z, t) (17) 

u(~)=y(z) (18) 

so that Eq. (10) becomes 

02(J du 0(9 deu 0(9 

In terms of the dimensionless variables, with ~0 = xzo, the initial condition 
on the dimensionless transverse-averaged propagator (9 becomes 

(9({, 0) = 6(~ - {o) (20) 

We proceed by taking the Laplace transform of Eq. (19), writing 

;o o ~(~, s ) =  dr (9(~, z ) e x p ( - s t )  (21) 

In terms of the new function v(~) (which has its dependence on the Laplace 
variable s supressed), defined by 

~;(~, s) -- v(~) exp [ -u (~ ) /2 ]  (22) 

Eq. (19) becomes 

,, ( 1 ~ 
v ( ~ ) -  ~ s + ~ e x p [ - u ( ~ ) J t ;  v(~)= -exp[u(~o) /2]  6 ( ~ -  ~o) (23) 
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[To reduce the differential equation to this simple form, one uses the 
dimensionless versions of Eqs. (5) and (6) to eliminate the derivatives of 
u(~).] The two independent solutions of the homogeneous equation are 

v<(~) = [E(~) - 2s 1/2] exp(+s~/2~) (24) 

v>(~) = [E(~)+  2s ~/2] exp(--sl/2~) (25) 

where 

E(~) = exp[- - u({)/2] (26) 

and the corresponding Wronskian is 

t t W = v  <v> - v  <v> = S s  3/2 (27) 

Thus, the general solution of Eq. (23) which vanishes as z ~ m is 

v(~)= - e x p [ u ( { o ) / 2 ] [ v < ( { < )  v > ( { > ) / W ]  +,4v>({) (28) 

where 

< = min(~, r r > = max(C, 40) (29) 

The constant A in Eq. (28) has to be determined by the boundary con- 
ditions at the charged surface at z = 0. We can write Eq. (28) out in detail 
a s  

e x p ( - s  1/2 14 - 4 o l )  
v(~)= ~ ~ -  [ - 4 s - E ( r 1 6 2  v2 IE(~) -  E(r ] 

+ A  
exp[ - s l / : (~  + r ] 

8s3/ZE(~o) 
[E(r + 2s '/2 ] [E(~) + 2s '~/2 ] (30) 

where we have redefined the arbitrary constant to simplify subsequent 
algebra. The new arbitrary constant A again has to be determined by the 
boundary conditions at the charged surface at z = 0. 

3.1. Absorbing Boundary 

For an absorbing boundary we have f(r ,  t ) - -0  at z = 0 ,  that is, 
v(~) = 0  at ~ =0.  Applying this to the general solution given by Eq. (30), 
we find 

1 - 2 s  l/2 

A -  1 + 2s ~/---------2 (31) 
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and the dimensionless transverse-averaged propagator ~b(~, r) can be found 
by the inverse Laplace transform 

1 f]+i~ 
- ds ~(~, s) exp(sz) (32) 

Write for brevity 

E=E(~)=2/(~+2) ,  Eo=E(~o)=2/(~o+2) (33) 

The contour integral becomes 

~(~, r)= E c+io~ dS s--TYi~exp(sr) t 16~iEof,,-i~L . exp(--sl/2 [~ -- ~ol) 

1 - -  2 S  1/2 

x (4s - Eo E -  2s 1/2 I E -  E0]) + exp[ -s'/2(~ + ~o)] 1 + 2s 1/-----~ 

x (Eo + 2sl/2)(E + 2s*/2)} (34) 

The only singularity of the integrand in Eq. (34) in the complex s-plane is a 
branch cut along the negative real axis. By deforming the inversion contour 
to wrap around this branch cut, we have 

E fo ~ exp( -  ~r) ~(~, T) = ~ d~ ~3/2 

{(4~ + EoE ) cos[~'/2(~ + ~o)] - 2~'/2( E -  Eo) sin [~1/2(~ - x ~o)] 

cosE~/~(~ + ~o)] 
- [(4~ + Eo)(4~ + E) - 4~'(Eo + 1)(E + 1)] 

4r 

2~ ~/2 sin[~'l/2(~ + ~0)] 

4~+ 1 

This is the final expression for 

) 
[ ( E -  1)(4; + Eo) + (Eo - l ) (4 ;  + E) ]  

(35) 

the dimensionless transverse-averaged 
propagator ~b(~, ~) for an absorbing boundary at the surface z = 0. 

3,2. Reflecting Boundary 

At a reflecting boundary the normal component of the probability flux 
J = V f + f l ( V w ) f  vanishes at the surface (z--0). In terms of the dimen- 
sionless function v(~) defined by Eq. (22), this condition reduces to 

d--~+ E(~) v(~)=0 (36) 
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at ~ = 0. Applying this to the general solution given by Eq. (30), we find 
that the arbitrary constant A is unity. As with the absorbing boundary 
problem, the only singularity in the inverse Laplace transform integral is 
the branch cut along the negative axis of the complex s-plane. Conse- 
quently, the dimensionless transverse-averaged propagator ~b((, t)  can be 
expressed as 

E f o  e x p ( -  ~t) 

x {(4~ + EoE) cos [r - 4o)] - 2~'/2(E - Eo) sin [~1/2(~ - 40)] 

+ (4~ - EoE) cos [~1/2(~ + 40)] - 2~1/2( E + Eo) sin[~'/2(4 + 4o)] } 

(37) 

where E and Eo are defined by Eq. (33). 

3 .3 .  R e s u l t s  

Figures 1 and 2 show examples of the dimensionless probability den- 
sity function ~b(~, t)  for absorbing and reflecting boundary conditions at 
the surface. In both cases the initial position of the tagged ion is at 
4o = Kz0 = 1. In our Smoluchowski-Poisson-Boltzmann treatment of ions 

0.5 
0(~, Z) Absorbing Boundary 

0.4 
f ' ~  - ~  "c = 0.5 

/ \ --- 
0.3 / \ - - -  

0.2 = ~ 0  

0.1 

0.0 
0.0 1.0 2.0 3.0 ~ 4.0 

Fig. 1. The dimensionless probability density function ~b(~, t) of a tagged ion as a function 
of the scaled distance ~ = Kz for various values of the dimensionless time t = KZDt. The 
absorbing boundary condition is applied at the surface z = 0. The initial position of the ion is at 
~-0 = ~Zo = 1; this is indicated by the arrow. 
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~{, T) 

2 

Reflecting Boundary 

�9 
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Fig. 2. The dimensionless probability density function ~b(~, z) of a tagged ion as a function 
of the scaled distance ~ = Kz for various values of the dimensionless time z = K2 Dt. The 
reflecting boundary condition is applied at the surface z = 0. The initial position of the ion is at 
40 = ~:Zo = 1; this is indicated by the arrow. 

of a single sign diffusing in 0 < z < oo (neutralized by a uniform surface 
charge at z=O) the dimensionless probabil i ty density functions ~b({, ~) 
given by Eqs. (35) and (37) are independent  of the valence of  the ions. 
F r o m  the results we see that the probabil i ty density of the tagged ion 
attains a quasiequil ibrium distribution very rapidly and then slowly decays 
to zero via absorpt ion  at the surface for the absorbing boundary  condition, 
and via "leakage" to infinity for both  absorbing and reflecting boundary  
conditions. 

4. THE  F I R S T - P A S S A G E - T I M E  P R O B L E M  

In a diffusion process, the mean first passage time T~(zl, Zo) from the 
plane z = z0 to the plane z = z~ is the mean time taken for a tagged particle 
depart ing from the plane z = z o to first reach the plane z = z~ (<z0) .  For  
diffusion governed by the Smoluchowski  equat ion (10), with the potential  
w a function only of  the coordinate  z, this mean first passage time is given 
by the double integral (s'9) 

i f z l  
r l (z l ,  Zo)= exp[flw(z)] | dz' e x p [ - f l w ( z ' ) ]  

D 40 
(38) 

For  cases in which the external potential  w(z) is of  finite range, the mean 
first-passage time T~(zl, Zo) is infinite for diffusion in the infinite domain  
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0 < z < oo. However, for the present problem of ions in the half-space z > 0 
bounded by a neutralizing uniform surface charge density on the plane 
z = O, w(z) is of infinite range. It diverges logarithmically [see Eqs. (9) and 
(11)], so that 

exp[ - f lw(z ) ]  = 4/(Kz + 2) 2 (39) 

Hence, the mean first-passage time is given explicitly by 

! 
T~(zl, Zo) =2-UD [(~CZo + 2) 2 - (Kzl + 2) 2] (40) 

and in particular, the mean time of first arrival at the surface 

1 
TI(0, z0) = ~ [(~CZo + 2) 2 - 4] 

z i g / )  
(41) 

increases quadratically with the initial position Zo. It can be shown from 
Eq. (34) that the variance of the mean time of first return for this problem 
is infinite, but the algebra involved is rather lengthy. 

5. A RELATED R A N D O M  W A L K  PROBLEM 

It turns out that the problem considered here can be mapped to a one- 
dimensional random walk problem introduced by Gillis (6) and studied 
further by Hughes and Sahimi. (7) We begin by approximating the dimen- 
sionless diffusion equation (19) by finite differences by choosing a spatial 
step size A~ and a temporal step size d~ so that 2Ar/(A~)2= 1. We further 
replace time derivatives by forward differences and spatial derivatives by 
central differences. If we write 

Pn(m) -- qS(m A~, n At), 

we find that 

m, n = 0, 1, 2, 3 .... (42) 

P ~ + , ( m ) = ~  1-t m d ~ + 2  P , ( m + l ) +  1 m d { + 2  P ~ ( m - 1 )  

2(a{) 2 P,,(m) 
(m A r  2 (43) 

If we hold d~ fixed, for large values of m, Eq. (43) reduces to 

' I ( ' )  ( ' )  1 P.+l (m)  = 2 I +  P . ( m + l ) +  1 P . (m--  1) (44) 
m - 1  m + l  
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In deriving Eq. (44), we retained in the coefficients of the quantities P,(m) 
terms that are constant or asymptotically proportional to l/m, and we 
adjusted terms that are of higher order 2 to ensure that solutions of Eq. (44) 
have the properties that (i) Z 2 = - ~  Pn(m)=~m~=--oo Po(m) and (ii) if 
Po(m)>~O for all m, then Pn(m)>~O for all m for n > 0 .  Without loss of 
generality, we may take Zm~= _co Po(m)= 1, in which case Eq. (44) is the 
evolution equation for a one-dimensional lattice random walk: 

Pn + 1  (m) = ~ p(m I m') P,(m') (45) 
m' 

where 

p(mlm')=-~[(l  + 1 + ( 1 - ~ ) 6 m , m ' +  (46) 

is the probability that a walker currently at site m' next steps to site m. 
Solving Eq. (45) with initial condition 

Po(m) = 6m, M (47) 

and appropriate boundary conditions gives a discrete analogue of the con- 
tinuum diffusion problem analyzed above. 

A class of walks with a variable bias, of which the present problem is a 
special case, was introduced by Gillis/6) He investigated the statistics of 
return to the starting site for a walk commencing at m = 0 and subject to 
the transition probability law 

, /1  k \  k 6 

where - 1/2 < k < 1/2, and 

16 • p(ml0)  = 2 m, 1 -~- 2 m,1 (49) 

2 To illustrate the derivation of Eq. (44), consider the coefficient of P,(m + 1) in Eq. (43). We 
have 

l + m A ~ +  2 1 1 0 { 1 'l 

The expressions in the middle and on the right are equivalent for large m. However, the one 
on the right mus t  be chosen if the O(1/m 2) terms are to be discarded without loss of conser- 
vation of probability. Not  all discretizations of a cont inuum equation that conserves 
probability will yield a discrete equation that conserves probability! 
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Equation (46) corresponds to the case k = 1/2 in Gillis' problem. Hughes 
and " :(7) Sahiml solved Gillis' problem for a walker with initial condition (47) 
and with Eq. (49) replaced by 

p(m ] 0) = ~m,, (50) 

corresponding to a reflecting barrier at the origin. [In their analysis, Mon- 
troll's defect technique (1~ is used to derive a first-order linear differential 
equation for the discrete Fourier transform of the site occupancy 
probability generating function.] It is found that the generating function 
for the probability of occupancy of the origin is 

P ( 0 t M ; 4 ) =  ~ P,(m) 4 ~ (51) 
n = 0  

~MF(M+ 1 +2k)  2FI( (M+ 1)/2+k,  M/2+ 1 +k ;  M +  1; 42 ) 

2MM! F(M+ 1 +2k)  2F1(1/2 +k ,  k; 1; ~2) 

(52) 

where 2F 1 denotes the usual hypergeometric function. (H) In the special case 
k = 1/2, the hypergeometric function can be evaluated in terms of elemen- 
tary functions and we find that 

- + 

1-42 ~ (53) 
If the walker arrives at m =0,  it is in a sense trapped there, since from 
m = 0 it can only step to m = 1, from which site it is always forced to return 
immediately to m =0.  Let fn (0 lM)  denote the first-passage time dis- 
tribution from site M to the origin, i.e., the probability of arriving at m = 0 
for the first time on the nth step, with Fn(O[M) having the generating 
function 

F ( 0 I M ; ~ ) =  ~ fn (0 lM)~ ~ (54) 
n = l  

It is easily shown by standard techniques from the theory of recurrent 
events (12) that for M > 0, 

f (0  [ M; 4) = e(01 M; ~)/P(010; ~) (55) 

[Although Eq. (55) is usually presented for translationally invariant 
walks, (12) it is not restricted to translationally invariant walks. (13,14)] 
Hence, 

= 1 + M 2 ( ~ - 1 ) + 0 ( [ 4 - 1 ]  3/z) as ~ - - , 1 -  (57) 
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We may now investigate the key statistical properties of the random walk. 
The probability of ever reaching the origin of coordinates is 

R ( 0 [ M ) =  lim F ( 0 I M ; 4 ) = I  (58) 
~ 1 -  

and the mean first-passage time to the origin of coordinates is 

T~(0IM)=eHm ~F(0IM;~)=M 2 (59) 

We find the same quadratic dependence on the initial distance from the 
wall as was obtained for the continuum problem in Eq. (41). The mean- 
square first-passage time can be calculated from an appropriate com- 
bination of the first and second derivatives of the first-passage time 
generating function. We find that it is infinite for M > 1. The formulas from 
Hughes and Sahimi (7) used to obtain these results are derived with a 
reflecting barrier at the origin, but for the calculation of first-passage times 
to the origin, the choice of the transition probability p(ml0)  from the 
origin is of no significance. 
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